outokumpu

Machining guideline for Prodec 304L/4307 and Prodec 316L/4404

Prodec 304L/4307 and Prodec 316L/4404 are special variants of standard Types 304 (UNS S30400) / 304L (UNS S30403) and 316 (UNS S31600) / 316L (UNS S31603) respectively with enhanced metallurgy for better machinability. The general rules for machining stainless steel also apply to the Prodec grades. The difference is that Prodec grades enable a longer tool life and/or tougher machining conditions. The machining window illustrated on the right gives a demonstration of this.

Other fabrication operations such as welding, hot working and cold working can be performed in the same way as for Core 304L/4307 and Supra 316L/4404.

Product forms

Prodec 304L/4307 and Prodec 316L/4404 are available as hexagon, square, flat and round bars, as well as rolled billets and plate.

Machining guidelines

The cutting parameters in this guideline will work under normal cutting conditions. It is suggested to begin with cutting parameters in the ranges indicated in the tables and then to improve parameters by moving to higher or lower speed, feed or depth of cut until best performance is reached. It is possible to end up in a range somewhat outside the values indicated in the tables depending on the actual machine set-up. A guide for further optimization of cutting parameters can be found under the "Troubleshooting" section on the next page.

Turning

- The machine and setup must be rigid.
- Use shortest possible tool length.
- Use coolant.
- · Use smallest possible nose radius to avoid vibrations.

	Carbide Tooling				HSS Tooling		
Turning	Depth of cut or width (mm)	Speed (m/min)	Feed (mm/ rev)	Tool Grade	Speed (m/min)	Feed (mm/ rev)	Tool Grade
Finishing	-2	260–280	0.10	M10-15	50 ¹	0.10	T15
Medium	2–5	200–260	0.25	M10-25	35	0.25	T15
Roughing	5-10	50-220	0.40	M25-35	20	0.40	T15
¹⁾ Coated tools							

Milling

- Avoid cutting through holes/cavities.
- · Ensure good chip evacuation, recutting of chips may cause tool damage.

	Carbide Too	oling		HSS Tooling			
Milling	Speed (m/min)	Feed (mm/rev)	Tool Grade	Speed (m/min)	Feed (mm/rev)	Tool Grade	
Face milling	150-250	0.08-0.30	M10-30	24–40	0.08-0.20	T15	
Side milling	180-240	0.08-0.30	M10-30	24–40	0.08–0.20	T15	
End milling	150-220	0.05-0.20	M10-30	24-40	0.025-0.15	T15	
End milling ²	50-100	0.05-0.20	M35	-	-	-	

²⁾ Solid cemented carbide

Drilling – high speed steel twist drills

- Use coolant.
- If possible use internal coolant through drill.
- Use of cobalt high alloyed drills is preferred.
- With PVD-coated HSS drills the cutting speed can be increased by 10%.
- Use as short a drill as possible.

Other machining operations

Cut-off

• Reduce feed by 50% approximately 6mm from the center.

Reaming

• Type of coolant: emulsion or cutting oil.

Tapping

- For blind holes use spiral flute grinding for good chip evacuation.
- For through holes use spiral point grinding with gun nose to push the chips forward.

Threading single insert

- Full profile insert for high quality thread forms.
- V-profile insert threading with minimum tool inventory.
- Multipoint insert for economic threading in mass production.

Drilling indexable insert

 Cutting data is very dependent on the drill design. Hence, the manufacturers recommendations must be considered.

Information given in this brochure may be subject to alterations without notice. Care has been taken to ensure that the contents of this publication are accurate but Outokumpu and its affiliated companies do not accept responsibility for errors or for information which is found to be misleading. Suggestions for or descriptions of the end use or application of products or methods of working are for information only and Outokumpu and its affiliated companies accept no liability in respect thereof. Before using products supplied or manufactured by the company the customer should satisfy himself of their suitability.

	HSS Tooling	HSS Tooling					
Drilling ³	Diameter (mm)	Speed (m/min)	Feed (mm/rev)	Rpm (rev/min)			
	1	10-12	0.05	3200-3800			
	3	15–17	0.10	1600-1800			
	5	17-20	0.12	1080-1270			
	10	17-20	0.15	540-640			
	15	17-20	0.20	360-430			
	20	17-20	0.30	270-320			
	30	17-20	0.30	180-220			

³⁾ HSS-5%Co

	Carbide Too	oling		HSS Tooling			
Other machining operations	Speed (m/min)	Feed (mm/rev)	Tool Grade	Speed (m/min)	Feed (mm/rev)	Tool Grade	
Cut-off	100-150	0.05-0.15	M30	24	0.05	T15	
Reaming	50	0.10-0.40	M10-M30	10-15	0.10-0.40	T15	
Tapping	-	-	-	5–13	-	-	
Threading singel insert	90–130	-	M10-M30	15–20	-	T15	
Drillling indexable insert	200–250	0.06-0.12	Center M30 Periferi M10	_	-	-	

Troubleshooting

